

M.E.I.

High Level Float Alarm

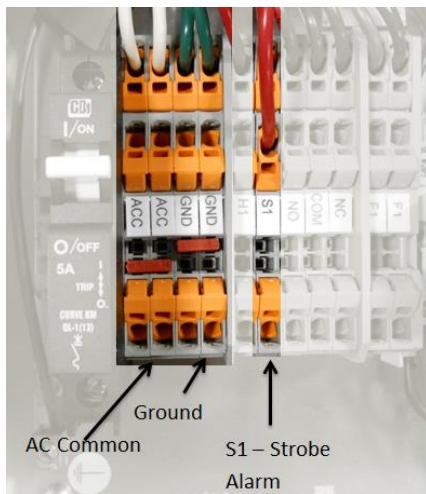
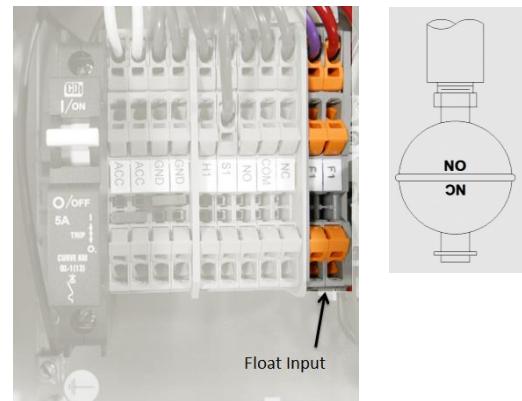
Wiring Instructions

MOUNTING

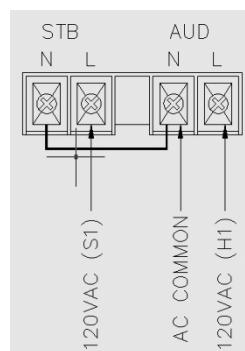
M.E.I. High Level Float enclosures must be mounted to structures that support the weight and sustain all other forces that the enclosure and its associated equipment may impose. Before any circuits are energized, all electrical and mechanical clearances must be checked to confirm that all the equipment functions safely and properly. Installers should observe all regulatory procedures and practices to assure electrical and mechanical conformance.

- The control cabinet should be securely mounted and positioned to protect against moisture, direct sunlight, and vibration where possible.
- Install the enclosure in such a way that the conduits & cable entries are pointing down.
- The control enclosure is not rated for use in hazardous areas. The enclosure is rated NEMA 4x.

ELECTRICAL CONNECTIONS



Risk of electrical shock. Switch off the power supply before opening the device. Do not install or wire the device while it is connected to the power supply. Failure to comply with this precaution can result in irreparable damage to the electronics, void the warranty, and cause serious injury or death.

Power Wiring. The M.E.I. High Level Float Alarm should be provided with a clean 120VAC, 60Hz, single phase circuit. The incoming power must be provided with a circuit breaker or a disconnect switch with fuses in accordance with NEC and all local codes. Minimum wire size is 14awg.


Float Sensor Wiring

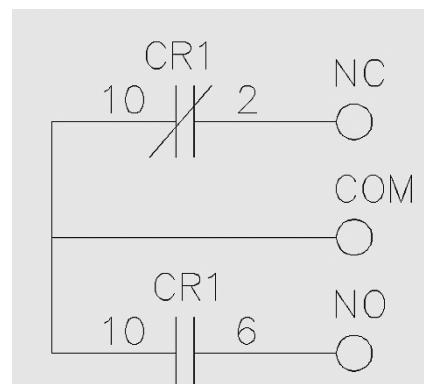
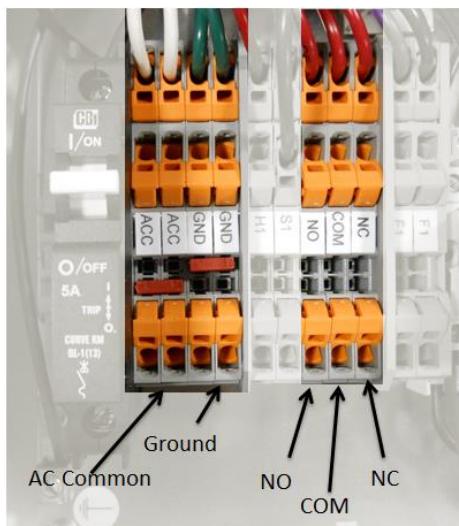
The pair of F1 terminals provides normally open contacts for connection to the float sensor. With proper wiring and installation, when a predetermined liquid level is reached, the HI LEVEL light indicator will energize, the audible alarm will sound and the strobe light will energize. The timer is provided so waves, or motion in the liquid doesn't rapidly engage or disengage the circuit. The timer will only disengage the circuit after the fluid level has dropped below the float sensor and the time on the timer has expired. The circuit is completed by connecting the leads from the float sensor to each F1 terminal (*the float sensor leads have no polarity since it is simply closing a circuit*).

Strobe Alarm Wiring

Terminal S1 provides 120VAC to energize a visual alarm after the float sensor activates the circuit. This circuit is completed by bringing AC common (neutral) back to an ACC terminal, and returning ground (where applicable) to a GND terminal.

Do not locate the multitone strobe alarm within 15' of a person's ear. The sound pressure levels that the MAX 120dBA permitted by ADA & OSHA can result in damage to hearing.

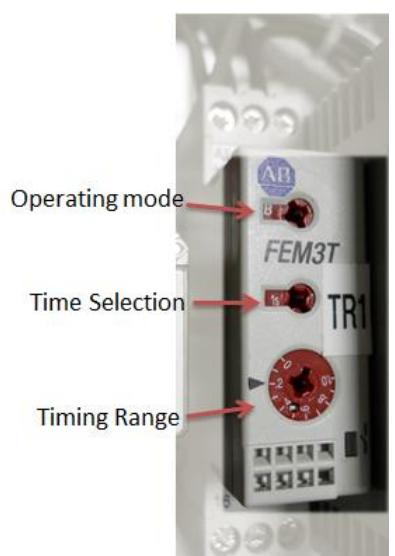
Audible Alarm Wiring



Terminal H1 provides 120VAC to energize an audible alarm after the float sensor activates the circuit. This circuit is completed by bringing AC common (neutral) back to an ACC terminal, and returning ground (where applicable) to a GND terminal.

Auxiliary Wiring

Terminals NO, COM and NC are provided so an optional motor, or valve may be controlled by the float sensor. The 'COM' terminal is the source connection for both NO (*normally open*) and NC (*normally closed*) terminals. The voltage provided on the COM terminal will be available on the NC terminal until the float sensor activates the circuit. The COM terminal provides the same voltage to the NO terminal, only after the float sensor has activated the circuit. There are many options for wiring auxiliary connections since this is an isolated circuit.

One setup may be where it operates a motor pump, and a valve until the fluid level reaches the float sensor. In this scenario 120VAC would be brought in on the COM terminal, where it would return to a motor starter through the NC terminal so the pump can operate until the tank is full, or until the float sensor activates the circuit. This may also be wired in tandem with a valve wired to the NO terminal that would close when the float sensor activates the circuit to prevent any flow back.



Max load across relay is 5 amps

Timer Settings

The timer delay can be set in seconds, minutes or hours depending on the specific application. Operating mode must be set to B, while the timing range may be specified from .1 seconds to 10 hours. Timing provides the option for 1s, 10s (seconds), 1m, 10m (minutes), 1h, or 10h (hours). Timing range selection spans from 0 to 1.0 with .1 intervals. To set a time, time selection would first be chosen, followed by timing range, multiply the two and that would be the delay.

To set a time for 5 seconds, the time selection would be set to 10s, and timing range would be set at .5

